
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 20, 621-640 (1995) 

FINITE VOLUME COMPUTATION OF INCOMPRESSIBLE 

ON STAGGERED GRIDS 
TURBULENT FLOWS IN GENERAL CO-ORDINATES 

M. ZIJLEMA, A. SEGAL AND P. WESSELING 
Faculty of Technical Mathematics and Informatics, Dew University of Technology, PO. Box 5031, 2600 GA Dew, 

The Netherlands 

SUMMARY 

A brief review of the computation of incompressible turbulent flow in complex geometries is given. A 2D finite 
volume method for the calculation of turbulent flow in general curvilinear co-ordinates is described. This method 
is based on a staggered grid arrangement and the contravariant flux components are chosen as primitive variables. 
Turbulence is modelled either by the standard k-c model or by a k-c model based on RNG theory. Convection is 
approximated with central differences for the mean flow quantities and a TVD-type MUSCL scheme for the 
turbulence equations. The sensitivity of the method to the grid properties is investigated. An application of this 
method to a complex turbulent flow is presented. The results of computations are compared with experimental data 
and other numerical solutions and are found to be satisfactory. 
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1. INTRODUCTION 

Solving incompressible turbulent flows using a boundary-fitted co-ordinate system is an important 
technique in CFD. It permits easy and accurate implementation of boundary conditions and makes the 
computation of flows in complex geometries possible. For this purpose two different approaches can be 
adopted. The first approach is a complete transformation of the Navier-Stokes equations to general co- 
ordinates. Such a co-ordinate-invariant formulation contains many geometric quantities and thus leads 
to more work and storage. Moreover, the equations involve Christoffel symbols, which may lead to 
inaccuracies on non-smooth grids. Another approach is a partial transformation, in which only the 
independent variables are transformed while retaining the velocity components as Cartesian 
components. As a result, the governing equations have a strong conservation form which has a 
much simpler structure and thus simplifies programming. 

The choice of the two approaches mentioned above depends on the grid arrangement: staggered 
versus collocated. On staggered grids, Cartesian velocity components in general are not perpendicular 
to grid lines. Therefore this approach may lead to unstable discretization. Hence the choice of grid- 
oriented velocity components as dependent variables is preferable. On collocated grids, Cartesian 
velocity components as primitive variables in the momentum equations are satisfactory. 
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In order to compute turbulent flows, a turbulence model has to be chosen. Many investigators adopt 
isotropic eddy viscosity formulations, of which the k-E model is the most prominent. This model 
consists of two transport equations for the turbulent kinetic energy k and its dissipation rate E .  Both 
equations contain a quantity Pk called the production rate of turbulent energy. In the co-ordinate- 
invariant approach this quantity contains Christoffel symbols (in 2D six different Christoffel symbols 
occur). Hence it seems attractive to implement the k-E model with the Cartesian approach. 

In the light of the above observations, the collocatedCartesian approach for solving the Reynolds- 
averaged Navier-Stokes equations with the k--E model has become very popular and has been widely 
used over the last 15 years.’-14 

In the collocated approach the pseudocompressibility method can also be used. This has been done 
e.g. in References 15 and 16. The former used an algebraic eddy viscosity model while the latter used 
the k-8 model. The main disadvantage of this method is that for time-dependent flow problems it is 
difficult to obtain accurate mass conservation. 

Although the collocated approach is very popular, an important disadvantage of this approach is that 
there are special measures required to obtain a stable discretization (e.g. the interpolation proposed in 
Reference 2 to avoid decoupling between pressure and velocity). 

Staggered grid arrangement has important advantages for incompressible flow computations, 
because this arrangement avoids non-physical pressure oscillations. Some publications discretizing the 
Reynolds-averaged Navier-Stokes equations for staggered grids with Cartesian velocity components as 
primitive variables and including the k-E model in general co-ordinates are References 17-20. As 
mentioned before, this approach may give rise to unstable discretizations. Following Chen et a1.,20 the 
more common way to avoid this is to choose the co-ordinate system such that the angle between the 
velocity components and the grid lines is not too large. However, for general domains it is very 
difficult to achieve this, especially in 3D. 

Discretizations for staggered grids with grid-oriented velocity components as unknowns with the k-E 
model are presented in References 21-26. Stem et ~ 1 . ~ ~  have formulated the governing equations in 
vector notation, which has the advantage that Christoffel symbols do not occur explicitly. Rastogi22 
and Majumdar and Rodi2’ use contravariant velocity components to solve the Navier-Stokes 
equations, while Pope,21 Demirdzic et ~ 1 . ~ ~  and Koshizuka and Oka26 employ contravariant physical 
velocity components as unknowns. 

In References 27-29 a co-ordinate-invariant discretization of the incompressible Navier-Stokes 
equations on a general staggered grid has been developed. Standard tensor notation has been used. As 
a consequence, the formulation contains Chnstoffel symbols. In spite of that, discretization accuracy 
can be maintained if certain rules concerning the approximation of the geometric quantities are 
followed, the contravariant flux instead of velocity components are chosen as primitive variables and 
the grid is not too non-smooth. Good results are obtained for 2D laminar flows on fairly smooth grids. 

At present it is hard to say which approach is best to compute incompressible flows in arbitrary 
geometries, but it is certainly not obvious that the collocatedCartesian approach is to be preferred. 

In this paper a finite volume method for turbulent flow predictions on staggered grids in complex 
geometries employing the contravariant flux components as dependent variables is presented. We will 
show that this approach works well even on moderately non-smooth grids. Turbulence is modelled 
either by the standard high-Re k--E model with wall hnctions or by a k--E model based on 
renormalization group theory recently derived by Yakhot et al. ,” The discretization incorporates 
central differences for the momentum equations and a TVD formulation of the second-order upwind 
scheme obtained with the MUSCL method for the turbulence equations. First, a simple test problem 
has been solved in order to investigate the influence of certain grid properties, such as skewness and 
non-uniformity, on the present method. Secondly, the method is applied to a realistic engineering 
problem, namely turbulent flow over a sand dune. 
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2.  EQUATIONS GOVERNING INCOMPRESSIBLE TURBULENT FLOWS IN 
GENERAL CO-ORDINATES 

In order to formulate the equations governing turbulent flow in general co-ordinates, tensor notation 
will be used; for an introduction see Reference 3 1. 

The physical domain with curved boundaries R is transformed to a rectangle G with the mapping 

T : x = x ( g ) ,  x E Q ,  E E  G. (1) 

Here x are Cartesian co-ordinates and E are boundary-conforming curvilinear co-ordinates. The 
mapping is assumed to be regular, i.e. the Jacobian of the transformation does not vanish. Covariant 
base vectors a(+ contravariant base vectors a(') and covariant and contravariant metric tensors g,p and 
gap are defined as 

The square root of the determinant of the covariant metric tensor, denoted by Jg,  equals the 
Jacobian of the transformation. The following formulae for covariant derivatives of tensors of rank 
zero, one and two respectively are used in this paper: 

where 

is the Christoffel symbol of the second kind. The summation convention holds for Greek indices. 
Turbulent flow is governed by the continuity equation and the Reynolds-averaged Navier-Stokes 

equations. The Reynolds stresses are related to the mean rates of strain through the isotropic eddy 
viscosity vt, which is calculated by the k-&-type models. The tensor formulation of these equations is 
given by 

Upa = 0, (8) 

k2 
vt = c p - ,  

& 
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where u* is the contravariant mean velocity component, p is the pressure, v is the kinematic viscosity, 
F" is an external force per unit volume, k is the turbulent kinetic energy, E is the turbulent energy 
dissipation rate and P k  is the production of turbulent energy, given by 

Equations (10x12) contain five constants cp, cel, cE2, a k  and oE. In the standard k-E model32 these 
constants are obtained from experiments for local equilibrium shear layer and isotropic turbulence. 
Following Launder and S ~ a l d i n g , ~ ~  their values are chosen as 0.09, 1.44, 1.92, 1.0 and 1.3 
respectively. In the RNG-based k--E model, derived by Yakhot and co -~orke r s ,3~ .~~  the constants are 
calculated explicitly by RNG theory and are given by c,, = 0.085, ce2 = 1.68, ak = 0.7179 and 

Specification of the boundary conditions is straightforward, except in near-wall regions where wall 
functions are adopted which use empirical laws to circumvent the inability of the k-E model to predict a 
logarithmic velocity profile near a wall.32 An important advantage of wall functions is that they allow 
the inclusion of empirical information for special cases, e.g. wall roughness. For a rough wall the wall 
shear stress 5, is computed as follows: 

c;J4 K Jkp ~ ' / ~ J k p h ~  
5 ,  = u s  t p  if h i  = ' > 11.6. 

ln(Er YP/hR) V 

Here the subscript P denotes the grid point in the centre of the wall-adjacent control volumes, which is 
assumed to be located in a log-law region, Y is the distance perpendicular to the wall, hR denotes the 
average height of roughness elements, u * t is the tangential velocity along the wall, K is the Von 
Karman constant (approximately equal to 0.4) and E, is a roughness parameter. For a very rough wall 
E, M 30, as recommended by S~hlicht ing.~~ For h i  < 1 1.6 the wall is considered to be smooth. In that 
case, wall functions for a smooth wall, as explained in Reference 32, can be employed: 

c ; / ~ ' c J ~ P  c ' f 4  Yp Jkp 
5, = u - t p ,  with Yp' = ' and E = 9.0. 

In( E Yp' ) V 

The rapid variation in turbulence quantities also necessitates special measures in evaluating the 
production and dissipation rates of turbulent kinetic energy near the wall. The average production and 
dissipation rates used in the near-wall cells have the following form: 
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These replace Pk and E respectively, which are source terms in the standard form of the equation for 
turbulent energy (1 1). Finally, the value of E at the first grid point away from the wall is determined 
from 

3. DISCRETIZATION OF THE GOVERNING EQUATIONS 

3.1.  Invariant finite volume discretization 

In discretizing the governing equations (8)<12), the following requirements should be met for 
accuracy reasons. 

1. The geometric identity $a:' dr, = 0 should be satisfied after discretization. 
2. When representing a constant velocity field u in terms of its contravariant components u" and 

recomputing u from V, the original vector field u should be recovered exactly. 

The first requirement imposes rules on the approximation of geometric quantities. The second 
requirement can be met if the flux components P = JgU" are chosen as unknowns. More details can 
be found in References 27-29. A finite volume method is used to discretize the governing equations on 
a staggered grid in the computational rectangle G. In G we choose a uniform grid, selecting the 
mapping x = x(6) such that the mesh size @" = 1. Figure 1 shows the locations of the points for the 
velocities u" and pressure p in the grid. The turbulence quantities k and E are evaluated at pressure 
points. For brevity the momentum and k--E equations are written in the following form: 

where 

and 

where 

I u1 
- uz 
' P  

u1 control volume 

u' control volume 

f""J p control volume 

Figure 1. Arrangement of the unknowns for a staggered grid 
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Figure 2. Local cell co-ordinates 

Here 4 = k or E and S,  represents the non-linear source terms. For convenience we introduce the local 
cell co-ordinates given by Figure 2. 

Discretization of the continuity equation is obtained by integration over a finite volume l2 with 
centre (0, 0) using (5): 

The momentum equation (20) is discretized in space as follows, taking for example a U'-cell with 
centre at (1, 0), using (6): 

Integration of the momentum equation with a = 2  over a U2-cell with centre (0, 1) is done similarly. 
Using (5 ) ,  the transport equation (22) is integrated over a pressure cell with centre (0, 0),  which 

yields 

The right-hand sides of (20) and (22) are integrated using the midpoint rule: 

with (k, l) = (1, 0) if cc = 1 or (k, r)  = (0, 1) if a = 2. 
The discretization is completed by substituting (21) in (25) and (23) in (26). Furthermore, v" is 

replaced by V a / J g .  
The cell face fluxes containing cell face values (convection) and derivatives (diffusion) have to be 

approximated. In the case of the momentum equations only central differences combined with (four- 
point) bilinear interpolations will be employed. Although the central difference scheme is non- 
monotone, so that it can to give rise to unphysical oscillations, typically in the vicinity of steep 
gradients, this does not occur, even at high Reynolds number. In fact, when the equations in question 
are weakly non-linear and coupled, central difference schemes or other higher-order non-monotone 
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schemes produces accurate results. However, in strongly coupledhon-linear situations, ‘wiggles’ occur 
and tend to grow in an unbounded manner, which prevents the solutions from converging. This is the 
reason why the convective transport of turbulence quantities, occurring e.g. in k-E-type models, has 
been approximated with first-order upwind schemes in numerous publications (e.g. References 2,3 ,9 ,  
10, 17,23 and 25). However, these schemes produce excessive numerical diffusion, particularly when 
the grid lines are not aligned with streamlines. Hence the use of higher-order schemes is essential when 
turbulence transport equations have to be accurately resolved but monotonicity must be ensured. 

In the present paper a TVDMUSCL scheme with the Chakravarthy-Osher limiter, commonly used 
in compressible Euler codes, is adapted for the accurate approximation of convective turbulence 
transport. Further details and an overview of TVD schemes can be found in Reference 35. Using a 
second-order upwind scheme obtained by means of van Leer’s MUSCL approach,36 the approximation 
of the face value 4 at point (1, 0), for example, is given by 

4(l, 0) = 4 ( 0 , 0 )  + N - K ) Q ( 4 ( 0 ,  0 )  - 4 ( - 2 , 0 ) 1  4 ( 2 , 0 )  - 4(0,  0))  

+ (1 + K ) Q I ( 4 ( 2 , 0 )  - 4 ( 0 , 0 ) 1  4 ( 0 , 0 )  - 4(-2,0))1 if V/l,O) 2 0, 

+ ( I ,  0 )  = 4 ( 2 , 0 )  - t [ ( l  - K ) Q ( 4 ( 4 , 0 )  - 4 ( 2 ,  O ) ,  4 ( 2 , 0 )  - 4 ( 0 , 0 ) )  

+ ( l  + K ) Q ( 4 ( 2 , 0 )  - 4 ( 0 , 0 ) ,  4 ( 4 , 0 )  - 4 ( 2 , 0 ) ) 1  if V(l l ,O)  < O. 

(29) 

(30) 

The parameter K indicates a specified scheme; for instance, K = - 1 corresponds to the fblly second- 
order one-sided upwind scheme. To avoid non-monotone behaviour of the solution, a limiter ‘I’ is 
introduced in the scheme (29), (30). Here the Chakravarthy-Osher limiter is chosen, defined by 

Qb, q )  = minmodb, Pq) E sign(p) max(0, min[lpl, Pq sign(p)l), (31) 

with 1 5 B 5 ( 3  - K ) / (  1 - K )  for all ratios of consecutive gradients p / q  2 0. For simplicity we 
choose B = 1, i.e. equations (29) and (30) reduce to 

4(1 ,0 )  = 4(0,  0) + $ minmod(4(o, 0 )  - 4 ( - 2 , O ) l  4 ( 2 , 0 )  - 4(0 ,0 ) )  if q, 0) 2 01 (32) 

(33) 1 
$( I ,  0 )  = 4 ( 2 , 0 )  - 2 rninmOd(4(4,0) - 4 ( 2 ,  O ) ,  +(2,0)  - 4 ( 0 , 0 ) )  if V/I,O) < 0. 

Because the limiter is non-linear, this TVDMUSCL scheme is implemented in a deferred correction 
manner: 

(34) n f l  - U , n + l  4 ( i , o )  - +( i ,o )  + (4ri,:) - 4F;;))Y 
where n represents the time level and ‘LT and ‘T’  indicate a first-order upwind and TVDMUSCL 
scheme respectively. The first-order upwind scheme for the evaluation of 4 at point (1, 0), for 
example, is given by 

4(1,0)  = +{I +sign(~/l,o)>M(o,o) ++{I - SiP(V/l,0))}4(2,0). (35) 

Non-orthogonal co-ordinates introduce mixed derivatives in diffusion terms, which make the 
corresponding coefficient matrix not diagonally dominant. In some circumstances, e.g. when the grid 
is highly non-orthogonal, this scheme may produce numerical instability, especially when turbulence 
equations are involved. Many authors (e.g. References 2 , 9  and 23) treat these derivatives in an explicit 
manner, i.e. calculate them from values obtained in the previous iteration, but this may cause 
deterioration of the convergence rate, especially when the mixed derivatives become large. For such 
cases another scheme proposed in Reference 37 may be employed, which is based on two-point rather 
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than four-point interpolation. For example, suppose that g12 > 0; then the following approximation is 
made: 

= +(4(0,0) + 4 ( 2 , 2 ) )  - +(4(0, -2) + 4 ( 2 , 0 ) ) .  

Similarly, ifgI2 < 0, 

It can be shown that this scheme guarantees boundcdness of the solution, i.e. the coefficient matrix 
corresponding to the diffusion terms is diagonally dominant, if the following condition is satisfied 

lg12) 5 min(g", g22). (38) 

The mixed derivatives are treated implicitly unless stated otherwise. 
The discretization of the production of turbulent energy (1 3) is carried out by substituting (4) in (1 3) 

and with central differencing. Again W is replaced by VaIJg. In spite of the presence of Christoffel 
symbols, numerical experiments have shown that this discretization gives good results on reasonably 
smooth grids, as we will see. 

The discretization of the V'-momentum equation results in the 19-point stencil presented in Figure 
3. The V2-stencil is obtained by rotation over 90". The total number of variables linked together in the 
transport equation is nine (cf. Figure 2). 

Implementation of boundary conditions for the momentum and transport equations is discussed in 
References 29 and 38. Discussion of the implementation of periodic as well as antiperiodic boundary 
conditions in our code can be found in Reference 39. 

3.2. Time discretization and solution method 

The spatial discretization yields systems of ordinary differential equations of the following form: 

DV = 0, (39) 

dV 
dt 
- + N(V)  + GP = F, (39) 

where Y P and 4 denote algebraic vectors containing the velocity, pressure and scalar unknowns 
respectively. Furthermore, D and G are the discretized divergence and gradient operators respectively, 

U + O + O  0 - V' unknown 

0 - V 2  unknown 

+ - p unknown 
0 0 

0 0 
u + - + o  

o + o + o  
Figurer 3. Stencil for V'-momentum equation 
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N and T represent the discretization of convection and diffusion terms respectively, F contains the 
discretized source term and boundary values, B represents a right-hand-side term arising from the 
boundary conditions and SQ contains the source term which is a function of V and +. Time 
discretization takes place with the implicit Euler method. Linearization of non-linear terms is carried 
out with the standard Newton method: 

N ( V " + ' )  xN(V")+-(V"" dN" -V"),  
dV 

For both the k- and &-equations the inequalities S; 2 0 and dS;/d+ < 0 must hold, because these are 
sufficient but not necessary conditions to preserve positivity of k and E. Assuming that vt is frozen at 
time level n,  then the dissipation term in equation (1 1) at time level n + 1 is linearized as follows: 

which satisfies the aforementioned inequalities. Note that Pk in equations (11) and (12) is non- 
negative. 

The resulting systems of linear equations are solved by a Krylov subspace method of GMRES 
type4' with preconditioning. This method is very suitable for non-symmetric matrices, has a relatively 
good rate of convergence and is vectorizable to a satisfactory degree. For more details we refer to 
Reference 41. Most have adopted more slowly convergent iterative methods for 
solving the momentum and turbulence equations, of which the line Gauss-Seidel method and the 
strongly implicit method of Stone42 are the most prominent. Both iterative methods are only partly 
vectorizable. 

The overall solution algorithm can be summarized as follows. First, the continuity equation and the 
momentum equations are solved. To ensure a divergence-free velocity field, a second-order pressure 
correction method as described in Reference 43 is used. Details can be found e.g. in Reference 29. 
Finally, the equations for k and E are solved in a decoupled way. Time stepping is repeated until a 
stationary solution is obtained. 

4. RESULTS 

The results presented in this section consist of two parts. The first part contains results for the turbulent 
flow through a straight channel, while the second part contains results for the turbulent flow over a sand 
dune. The numerical experiments for the flow in a channel were carried out to investigate the effects of 
non-orthogonality, non-smoothness and stretching of grid lines on the accuracy, stability and efficiency 
of the present method, especially when turbulence equations are involved. The flow over a sand dune 
was selected as an example of a flow problem, both geometrically and physically complex, for which 
experimental data are available. 

4. I .  Turbulent flow through a straight channel 

The test problem is that of developing turbulent flow between two parallel plates with a length-to-width 
aspect ratio of 150. The Reynolds number based on inlet velocity and channel width Hi s  ReH = lo7. 



630 M. ZIJLEMA, A. SEGAL AND P. WESSELING 

Owing to symmetry, only one half of the domain needs to be considered. Uniform inlet profiles were 
prescribed for all variables. In addition, wall functions, symmetry and outflow conditions (i.e. both 
tangential and normal stresses as well as normal gradients of turbulence quantities are zero) were 
employed. The computations were performed with four different grids, each consisting of 40 x 20 
cells, as shown in Figure 4: a uniform grid, a stretched grid with a cell aspect ratio of 100, a moderately 
non-smooth grid and a skewed grid. 

Figures 5 and 6 show the normalized velocity and normalized turbulent energy profiles respectively. 
Here ur= ,/(z,Jp) is the friction velocity, where z, is the wall shear stress. The location of the profiles 
is at 110H downstream from the entrance. Following Tennekes and L ~ m l e y ? ~  the fully developed 
velocity profile for turbulent channel flow is expected to be logarithmic near the wall, whereas the 
dependence of the fully developed turbulent kinetic energy on the distance to the wall is assumed to be 
linear, as is indeed the case in Figures 5 and 6. Convergence towards steady state was in all cases 
stable, provided that in the skewness case the mixed derivatives in the turbulence equations were 
approximated according to (36) and (37). However, slower convergence was observed in cases of grid 
skewness and non-uniformity: the number of time steps needed to reach the converged solution was 
increased by up to 3%, 10% and 1 15% respectively in cases of non-smooth, stretched and skewed grids 
with respect to the uniform grid. 

No effect of grid non-orthogonality and non-smoothness on accuracy was observed. However, in the 
velocity as well as the turbulent energy profiles, small discrepancies due to stretching of grid lines have 
been observed. No adverse effects attributable to the Christoffel symbols in the production term (13) 
were observed on the non-smooth grid. It should be noted that the uniform and skewed grids were 
insufficiently fine to resolve the steep velocity gradient near the wall. 

No instabilities or wiggles were encountered in these calculations when convection in the 
momentum equations was approximated with central differences. 

Based on the results discussed above, it appears that the present method is robust with respect to the 
grid skewness and non-uniformity, at least for the range of grids considered. 

4.2. Turbulent flow over a sand dune 

Description of the problem. The problem considered here is turbulent flow over a sand dune, which 
is a typical hydraulic flow problem. Earlier calculations related to this problem have been carried out 
e.g. by Peric’et a1.45 The experimental data are taken from Reference 45 and are used here to assess the 
performance of the present method. 

Figure 4. Four different grids: uniform, stretched, non-smooth and skewed (from top to bottom) 
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loOooo skewpd grid * * * i 
ROO00 
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40000 
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n 
10 I 5 20 25 30 35 40 

4.7 

Figure 5 .  Streamwise velocity profiles at x/H = 110 

The water flow configuration over a two-dimensional sand dune is presented in Figure 7. The 
average water depth is 0.3 m and the bulk inlet velocity is 0.43 m s-'. Hence the Reynolds number is 
approximately 100,000. The bottom surface is covered with sand particles and the average roughness 
height is 1.5 x m. 

Boundary conditions. The inlet boundary conditions for the horizontal and vertical velocities and 
turbulent kinetic energy are prescribed according to the experimental data. The inlet dissipation of the 
turbulent energy is estimated from 

where the length scale I is given by 

I = min(lcy, 0 . W )  

and His  the inlet depth. At the outflow section it is assumed that the tangential and normal stresses and 
normal gradients of turbulence quantities are all zero. The free surface is treated as a symmetry line. As 
a consequence, the normal velocity and tangential stress are both zero and a zero-normal-gradient 

Y+ 

140000 

120000 

I00000 

ROO00 

60000 

40000 

20000 

0 

skewed grid ii * t 

0 0.5 1 1.5 2 2.5 3 3.5 4 

k1.t 
Figure 6. Turbulent kinetic energy profiles at x/H = 110 
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7 

A B  C D  E F  G H E  

Figure 7. Geometry of the domain for the sand dune flow 

condition is valid for turbulence quantities. Finally, in the wall region the wall functions for rough walls 
are used. 

Grids and grid dependence test. Calculations using the standard k-e model were performed with 
three different grids: 80 x 40, 120 x 60 and 160 x 80 cells. In Figure 8 the 80 x 40 grid is shown. The 
three grids have been refined in the vicinity of the wall to resolve steep gradients of flow properties. 

The sensitivity of the numerical solutions to grid refinement is examined by comparing the predicted 
friction velocities uTr where 7, = puJurl, along the wall for each grid. The fiction velocity is found to 
be one of the most sensitive quantities. The result is shown in Figure 9. It can be seen that the 
differences are relatively small, whereas the largest differences occur only around the reattachment 
point. the 160 x 80 grid results were therefore taken as acceptably grid-independent and are presented 
in further detail below. It should be noted that all three grid results agree well with the experimental 
data. Furthermore, these results resemble the results of PeriC et aL4’ very well. 

Performance of the present method. To give an impression of the performance of the present 
method, information on the computing times will be given. All calculations were performed on an HP 
9000/735 workstation (100% scalar) and the CPU time has been measured in seconds. 

The momentum and transport equations are solved with the GMRES method combined with an 
ILUD preconditioner, whereas the pressure system is solved with a Bi-CGSTAB method 
preconditioned by an ILU decomposition. The reason for this is that a considerable gain in CPU 
time can be obtained by solving the pressure equations with the Bi-CGSTAB method instead of 
GMRES. Further details on these iterative methods can be found in References 41 and 46. The 
GMRES or Bi-CGSTAB iteration process stops at each time step if the ratio of the residual norm to the 
initial residual norm [Irl12/llrol12< tol. In the present computations, tol = lop6 for the momentum and 
transport equations and to1 = lo-’ for the pressure equation. 

Table I gives for the different grids the average CPU time for building the systems and solving the 
equations and the average number of iterations for each system of equations for one time step. 
Furthermore, on the 160 x 80 grid, approximately 1100 time steps with At = 0.01 s were needed for 
the convergence to stationary solutions; this corresponds to approximately 3.5 h of CPU time on the 
HP 9000/735 workstation. The calculations for the 120 x 60 and 80 x 40 grids converged to steady 
state in about 515 time steps with At = 0.02 s and 325 time steps with At = 0-03 s respectively. These 

Figure 8. A typical grid for the sand dune flow (80 x 40 cells) 
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Figure 9. Grid dependence test 

correspond to 50 and 10 min of CPU time respectively. The following conclusions can be drawn from 
Table I. 

1 .  The solution (CPU) time per iteration tends to rise as NOL, where N is the number of grid cells and 

2. The solution of the pressure equations is the most time-consuming part. 
3. Building of the systems for turbulence equations is relative costly owing to the presence of the 
source terms. 

It may be expected that for fine grid computations a large gain in CPU time can be obtained by 
taking coarse grid solutions instead of zero values as the initial guess. In this experiment the 80 x 40 
grid is used to initiate the 160 x 80 grid computation. Furthermore, we use the Bi-CGSTAB method to 
solve the pressure equations. It appears that with At = 0.02 s, typically 385 time steps were needed to 
obtain stationary solutions. The total CPU time was around 80 min on the HP. Hence a factor of 
approximately 2.5 is saved by taking coarse grid solutions instead of zero values as the initial guess for 
fine grid calculations. 

a varies from 1.20 to 1.26, which is typical for Krylov subspace methods. 

Table I. Averaged CPU times (seconds) and number of iterations per time step using different grids 

Building Solving the Number of 
Grid Equation of systems equations iterations 

80 x 40 Momentum 
Pressure 
k 
& 

120 x 60 

160 x 80 

Momentum 
Pressure 
k 
& 

0.19 
0.02 
0.32 
0-30 

0.38 
0.07 
0.70 
0.66 

0.52 
0.59 
0.09 
0.08 

1 *49 
1-82 
0.28 
0.28 

12 
23 

5 
5 

13 
26 
5 
5 

Momentum 0.67 2-24 9 
Pressure 0.13 4.95 34 
k 1.22 0.48 5 
& 1.18 0.46 4 
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Predicted flow characteristics. Details of the predicted flow field features in the sand dune 
geometry are presented in Figures 10-1 3. They show clearly where separation and reattachment occur, 
the size and shape of the recirculation region and the pressure recovery after separation. Also evident 
are steep gradients of turbulent kinetic energy and length scales near the wall. The present streamlines 
and isobars patterns agree closely with those in Reference 45. 

Comparison with experimental data. For comparison purposes, calculations are done with both 
standard and RNG-modified k-z models. From the calculation with the RNG-based k--E model on the 
160 x 80 grid it turns out that the solutions typically needed about 1450 time steps (At = 0.01 s) to 
converge to steady state and consumed about 4-5 CPU hours on the HP. 

First we compare the predicted reattachment lengths for the different grids, turbulence models and 
convection schemes applied to the momentum equations with the measured one. These are 
summarized in Table 11. The reattachment lengths computed by Peric’et ~ 1 . ~ ~  are also included. They 
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Table 11. Measured and predicted reattachment lengths using different grids, turbulence models and convection 
schemes for momentum 

Turbulence Convection scheme Reattachment 
Case Grid model for momentum length (m) 

- - 0.4245 Experiment - 

Present 80 x 40 Standard k--E Central 
120 x 60 Standard k--E Central 
160 x 80 Standard k--E Central 
160 x 80 RNG k-& Central 

PeriC et a ~ . ~ ~  80 x 40 Standard k--E Upwind 
160 x 80 Standard k--E Upwind 
160 x 80 Standard k--E Central 

0-3329 
0.3490 
0.4075 
0.4738 
0.2867 
0-3329 
0-4372 

used curvilinear non-orthogonal co-ordinates and a collocated grid in connection with Cartesian 
velocity components, whereas the convective turbulence transport has been approximated with the 
first-order upwind scheme. From this table it is seen that on the 160 x 80 grid the standard k--E model 
slightly underpredicts the reattachment length, whereas the RNG-based k--E model gives an 
overprediction of about 10%. 

Detailed comparison of the predicted and experimental mean velocities (horizontal as well as 
vertical) is made in Figures 14-19. The locations of the cross-sections specified here are x = -0.02 m 
(before separation), x = 0.21 m (across the recirculation region) and x = 0.43 m (just after 
reattachment). It can be observed that the calculations of the horizontal mean velocity with both 
standard and RNG-based k--E models yield generally good agreement with the measurements for all the 
sections considered. Figure 16 indicates that the standard k-c model underpredicts the reattachment 
length, while the RNG k-c model overpredicts this length. Relatively large differences were obtained in 
the vertical mean velocity profiles. 

Moreover, the predicted vertical velocity at x = -0.02 m is contradictory to the measured one. It is 
believed that this must be attributed either to shortcomings of the turbulence models or to possible 
experimental errors. It is seen that the RNG k-c model produces results in better agreement with the 
measurements than the standard k-c model, especially close to the wall. 
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Experiment 

0.1 0 

i y [m] 0.05 

0 
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Figure 14. Horizontal velocity profile at x = -0.02 m 
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The turbulent kinetic energy predictions are shown in Figures 20-22. Although the profile shapes 
are qualitatively similar, these profiles display an underprediction of turbulent energy surrounding and 
inside the recirculation region. This is a known defect of the k-&-type models. However, the locations 
of local maxima are well predicted, especially by the RNG k-& model. Furthermore, Figures 2 1 and 22 
indicate that the standard k-& model produces the best prediction of turbulent energy. 

In Figure 23 the predicted variation in the water depth [, which is calculated using the hydrostatic 
pressure assumption, is compared with measurements. The qualitative agreement between prediction 
and measurements seems good. 
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5. CONCLUSIONS 

An invariant finite volume discretization in general co-ordinates of the Reynolds-averaged Navier- 
Stokes equations with the standard and RNG-modified k--E models on staggered grids has been 
presented. Computational examples have shown that the staggeredinvariant approach to computing 
turbulent flows also works well even on moderately non-smooth grids. The use of central differences to 
approximate the convection of volume fluxes offers good accuracy and no instability was encountered 
in spite of high Reynolds numbers. The TVD formulation of a second-order MUSCL scheme is 
employed for convection of k and E to prevent negative values of k and E and thus instability. The 
diffusion terms are approximated with central differences. The mixed derivatives in these terms are 
treated implicitly, except in highly non-orthogonal cases where the mixed derivatives are approximated 
according to (36) and (37). This does not affect the stability of the solution method, but it was found 
that this treatment lowers the convergence rate. 

The present method was first assessed by applying it to a simple test case, namely turbulent flow 
through a straight channel for which the solution is known. It was found that no differences were 
observed between the solutions obtained on the skewed and fairly non-smooth grids and the uniform 
one. Only the accuracy of the solution of streamwise velocity and turbulent energy is affected a little by 
stretching of grid lines in which the mesh aspect ratio is relatively high. Finally, the present method 
was applied to turbulent flow over a 2D sand dune. This test case shows that both standard and RNG- 
based k-& models produce satisfactory predictions of the mean flow field but represent the turbulent 
characteristics only in a qualitatively sense. Furthermore, the calculations are in accordance with earlier 
numerical results. 

0.005 I I 1 I I I I I I 

0.001 - 
i [4 0 * 

Standard k-E model - - 
-0.003 - 0 RNG k - ~  model - - - Experiment o -0.004 - 
-0.005 I 

I I I I I 1 4 I 
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The efficiency and robustness of the present method are satisfactory. In the case of fine grid 
calculations, much CPU time can be saved by taking coarse grid solutions instead of zero values as the 
initial guess. 

It is expected that the present method will produce inaccurate solutions when highly non-smooth 
grids are employed. An extension to the non-smooth case is currently being investigated by van Beek 
and Wes~e l ing~~  and the results seem to be very promising. Extension to three-dimensional cases is 
also under consideration. 
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